Optimising the use of satellite data in NWP

through the inclusion of error correlation
structures

L.M. Stewart, University of Reading

Co-authors: S.L. Dance and N.K. Nichols (UoR);
J.Cameron, S.English and J.Eyre (Met Office UK)

Funding: NERC and Met Office UK

Adjoint Model Applications In Dynamic Meteorology
Workshop 20 May 2009

L.M. Stewart, University of Reading



Talk structure

% Introduction and theory

- Motivation

- Variational data assimilation

- Observation error covariance matrices
% Quantifying observation error correlations

- Desroziers’ method of statistical approximation
- Application to IASI data
- Results

% Modelling observation error correlation structure
- Approximate structures for R

L.M. Stewart, University of Reading



What are observation error correlations?

Every observation y of a atmospheric variable x has an
associated errore: y = Hx + €

— observation error correlations are present when components
of the error vector € are related

— measurement errors are attributed to 3 sources: instrument
noise, forward model error and representativity error

Data Coverage: IASI (8/12/2008, 0 UTC, qu00)
Total number of observations assimilated: 3113
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Error sources

e |[nstrument noise

- temperature converted neét value
- regular calibrations ensure noise is uncorrelated between
channels
e Forward model error

- errors in discretisation of radiative transfer equation
- errors in mis-representation of gaseous contributors
- errors from undetected cloud

o Representativity error

- contrasting model and observation resolutions
- observations resolve spatial scales or features that the
model cannot

- contributes to cross channel observation error correlations
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Why are correlations important?

Problems

-ve magnitude and behaviour relatively unknown

-ve reduce weighting of observations in analysis

-ve for an observation vector of size 108, difficult to store and
invert observation error matrix if correlations are included

Benefits

+ve increase accuracy of gradients of the observed field
represented in the analysis

+ve works with the prior error covariance to specify how
observation features should be smoothed

+ve more information available from observations
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Variational data assimilation

Assimilation objective
Model forecast + Observation data — State of atmosphere

Assimilation method Minimise a cost function which
measures distance of a solution state x from the observations
y° € R™ and the background field x° € R”

Cost Function

JX) = 0= x)TB (x = x) + 5(y° ~ HOO) R (4° - H(x))

where B and R are the background and observation error
covariance matrices respectively
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An error covariance matrix structure

The observation error covariance matrix takes the form:
R= D1 /ZCD1 /2

where C is the error correlation matrix

1 p12 ... pim
c— p12 .1 . P2m
and D is the error variance matrix
24 0 ... 0
0 022 0
D= )
0 0 0%m

L.M. Stewart, University of Reading



Quantifying cross-channel correlations: a study

Objective

Generate the true observation error correlation structure for a
sample set of remotely sensed data typical of NWP

Data type

- 1ASI (infrared atmospheric sounding interferometer)
observations

- measurements of the infrared radiation emitted by the
earth’s surface and atmosphere at different wavelengths

Method

We use a post analysis diagnostic derived from variational data
assimilation theory [Desroziers, 2005]
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Desroziers’ method of statistical approximation

Recall the background state, x,, and observation vector, y, are
approximations to the true state of the atmosphere, x;,

y = Hx;+¢°
Xt = Xb+€b

where €° and e? are the observation and background errors
respectively.

The best linear unbiased estimate of the true state, x5, is given
by

Xa = Xp+K(y—Hxp)=xp+Kd]
K = BH'(HBH" +R)™’




Desroziers’ method of statistical approximation

Innovation vector

dg=y-Hxp =

Analysis innovation vector

di=y-Hxs =

~
~

y = H(xp + Kdp)
(1- HK)d?
R(HBH' + R)™'d?

A
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Desroziers’ method of statistical approximation

Taking the expectation of the cross product of df and dy, and
assuming
E[e°(e®)"] = E[e®(e%)T] = 0,

we find a statistical approximation for the observation error
covariances

Q

E[d2(d)"] E[R(HBH" + R)~'d2(dp)|

R(HBH' + R)™"EE [(e° + HeP)(e® + He?)T]
R(HBH” + R)™"(R+HBH')

R

Q

Q

Q
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Application to IASI data
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Figure: Assimilation process
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Observation error correlation matrix
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Figure: Error correlation matrix for 139 channels used in Var
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Observation error correlation matrix

Figure: Error correlation matrix for (a) temperature sounding
channels; (b) water vapour channels
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Operational and diagnosed error variances

Figure: Operational error variances (black line), diagnosed error

variances (red line), and first off-diagonal error covariance (green line)
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Diagnosed error variances: comparison with
Hollingsworth-Lonnberg (H-L) method
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Figure: Diagnosed error variances (red line), H-L diagnosed error
variances for 84.8km (blue and black line) and 61.9km (green line)
separation. Plot provided by James Cameron, UK Met Office.
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Quantifying cross-channel correlations: a summary

% Strong off-diagonal correlations are present between
channels with similar spectral properties

% Channels highly sensitive to water vapour have large
observation error variances and covariances

% The observation error variance is being overestimated in
current asimilation algorithms

% Diagnosed error variances are comparable with those
using the H-L diagnostic
% Non-symmetric matrices! — future work
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Modelling error correlation structure

What next?

Investigate how to approximate the true error correlation
structure within operational assimilation methods...

Current approaches
¢ a diagonal matrix approximation
e diagonal variance inflation
Alternative approaches
e a Markov error covariance approximation

¢ atruncated eigendecomposition approximation [Fisher,
2005]

e a Toeplitz to circulant matrix approximation [Healy, 2005]
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A desirable error covariance matrix

Main issue in observation error correlation modelling
% need to calculate matrix-vector product R~ (y° — Hx) every
time we calculate cost function J
* relatively easy if R = D = m scalar multiplications
% BUT y € R' and so R € R'%°x1%° which, if dense, is
impossible to store and invert
The perfect partner: what do we want from R # D?

v structure resulting in an R~ suitable for storage / can be
used cheaply in a matrix-vector product

¥ representative of the true error correlation structure

¥ greater access to information from the observations and
improved analysis accuracy
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A Markov error covariance approximation

Consider a Markov covariance matrix of the form
Rj = o2p™, p= exp(—é—z)
h
where 62 is the error variance, 6z is the level spacing, and h is

the length scale
This is equivalent to a correlation matrix of the form

1T p p p"

p 1 p p!
c=|r p 1 pr2

p" p? p 1
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A Markov error covariance approximation

The benefit of this choice is that C has a tri-diagonal inverse

1 —p 0 .. 0

—p 14+p% —p .. 0

o 1 0 -—p 1+p? 0
S 1-p2| . :
0 -p 1+p% —p

0 0 -p 1

and therefore as does R: R~ = ;—zl x C1

No need to store and invert R!
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An eigendecomposition approximation

Describe C by a truncated eigendecomposition using its
leading eigenpairs

K
R =D'2CD'? = p'/2 (a/—l— Z()\k - oc)vkva) p1/2
k=1

where (Ak, vk) is an eigenvalue, eigenvector pair of C, K is the
number of eigenpairs used, and a is chosen such that
trace(R)=trace(D) [Fisher, 2005]

This matrix also has an easily attainable inverse

SR IS T
No need to store and invert R!
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% Observation error correlations are often created because
of contrasting model and observation resolutions

% Including observation error correlation structure can
increase analysis accuracy and information content

% In IASI data, observation error correlations are strongest
bewteen channels with similar spectral properties

% In IASI data, the largest observation error covariances are
between channels highly sensitive to water vapour

% In order to include observation error correlation structure in
data assimilation algorithms, the R matrix must be suitably
structured
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